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Generalized Clausius�Mossotti Formula for Random
Composite with Circular Fibers
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An important area of materials science is the study of effective dielectric, thermal
and electrical properties of two phase composite materials with very different
properties of the constituents. The case of small concentration is well studied
and analytical formulas such as Clausius�Mossotti (Maxwell�Garnett) are suc-
cessfully used by physicists and engineers. We investigate analytically the case of
an arbitrary number of unidirectional circular fibers in the periodicity cell when
the concentration of the fibers is not small, i.e., we account for interactions of
all orders (pair, triplet, etc.). We next consider transversely-random unidirec-
tional composite of the parallel fibers and obtain a closed form representation
for the effective conductivity (as a power series in the concentration v). We
express the coefficients in this expansion in terms of integrals of the elliptic
Eisenstein functions. These integrals are evaluated and the explicit dependence
of the parameter d, which characterizes random position of the fibers centers, is
obtained. Thus we have extended the Clausius�Mossotti formula for the non
dilute mixtures by adding the higher order terms in concentration and qualita-
tively evaluated the effect of randomness in the fibers locations. In particular, we
have proven that the periodic array provides extremum for the effective conduc-
tivity in our class of random arrays (``shaking'' geometries). Our approach is
based on complex analysis techniques and functional equations, which are
solved by the successive approximations method.

KEY WORDS: Effective conductivity; homogenization; random composite
material; functional equation.
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1. INTRODUCTION

One of the most important problem of materials science is analysis of the
various fields and prediction of the effective properties of composite
materials. Such problems can be studied by modeling of the processes by
Laplace's equations with appropriate interface conditions. The solution of
this boundary value problem determines the physical field (e.g., electric
potential) in the composite and the effective conductivity tensor 4e , which
describes overall transport properties of a composite. In this paper we
consider composites which consist of a uniform background (matrix or host)
reinforced by unidirectional cylindrical fibers. This mathematical model
describes heat conduction, electric and dielectric transport properties,
permeability of a liquid flow and anti-plane elastic problems. In order to
obtain a formula for 4e it is sufficient to solve a boundary value problem
in the unit periodicity cell.(2, 9) Grigolyuk and Filshtinskij(12) used the method
of integral equations to solve two-dimensional cell problems numerically.
Main focus of this work was directed towards the elastic problems.
Another constructive approach is based on the reduction to an infinite
systems of linear algebraic equations, which can be solved numerically by
the truncation procedure. Berdichevskij(4) used series to obtain approxima-
tions for 4e in the case of one inclusion in a three-dimensional periodic cell.
In this work a three-dimensional analog of the elliptic Weierstrass' func-
tions had been developed. The application of Rayleigh's method(17) reduces
the two-dimensional conductivity problem to an infinite system of linear
algebraic equations. The latter can be truncated and solved numerically.
McPhedran et al. in ref. 19 have extended Rayleigh's techniques (in par-
ticular, derived an expression for the multipole coefficients) and obtained
approximate formulas for the effective conductivity of the square and
hexagonal arrays of cylinders. Similar method was applied by Sangani and
Yao.(28) Using special derivative operators they reduced the problem to an
infinite system of linear algebraic equations. Analytic properties of 4e as a
function of the contrast parameter have been exploited by Bergman and
Dunn(5) and Milton(20) to construct bounds for 4e . These bounds provide
an efficient tool for the numerical evaluation of 4e . Cheng and Greengard(7)

studied problems for composite materials with a finite (large) number of
inclusions in the plane. The method of integral equations and the method
of images have been used to reduce the problem to an infinite system of
linear algebraic equations. A number of interesting numerical results have
been presented in this work.

A simple formula on 4e is given by the famous Clausius�Mossotti
approximation (for history and applications see refs. 16 and 20). In two
dimensions under the assumption that the composite is macroscopically
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isotropic, that is 4e=( *e
0

0
*e

), this formula can be written as follows:

*e=
1+\v
1&\v

+O(v2) (1.1)

Here \=(*1&1)�(*1+1), the conductivity of the matrix is equal to unity
(*=1), the conductivity of the fibers is *1 and the concentration v tends to
zero. Formula (1.1) provides a good approximations for *e in the case of
circular unidirectional fibers for small v (the dilute limit). Many authors
(see above citations) improved the formula (1.1) by considering special
geometrical structures such as the square and the hexagonal arrays. As it
was noted above they reduced the problem to the integral equations or to
the infinite systems of linear algebraic equations, and then used numerics.
A method of functional equations has been developed in refs. 23�26 for the
planar interface conditions (conjugation conditions). At first the functional
equations appeared in Golusin's paper.(11) In particular, the method of
functional equations has been applied to improve (1.1) by evaluation of the
next terms in the expansion in \. For the sake of completeness this result
is presented in Theorems 3.2 and 3.3 of the present paper. One can see that
these terms contain geometrical parameters such as positions of the cylin-
ders and their radii. For instance, the following formula for the effective
conductivity tensor 4e=( *x

e
*e

xy
*e

xy

*y
e
) follows from Theorem 3.3

*x
e &i*xy

e =1+2\ :
N

m=1

vm+
\2

?
:

k{m

vmvkE2(ak&am)+O(\3) (1.2)

as \ � 0, where N is the number of inclusion in the unit cell, am are the
centers of inclusions (complex numbers), vm=?r2

m , rm are the radii of
inclusions, E2 is the Eisenstein function (see Appendix C). Equation (1.2)
allows us to calculate the components *x

e and *xy
e of the tensor 4e , since

(1.2) is a complex equality and is equivalent to two real ones. The compo-
nent * y

e is calculated by similar way.
In this paper we solve functional equations using a power series in

concentration v. Hence, we improve (1.1) by explicit evaluation of the
higher order terms in the expansion in v for arbitrary fixed \ (unlike the
previous work, (23) where the expansion in \ have been considered). In
Theorem 3.4 we derive a simple algorithm based on successive approxima-
tions to evaluate the flux in the composite material. Using these formulas
for the local fields we obtain formula (4.9) for the effective conductivity.
Higher-order terms explicitly computed through the geometrical param-
eters: centers and radii of the cylinders (Section 4, (4.14)�(4.18)). The series
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in \ is rather convenient to obtain convergence results for the method of
functional equations. The series in v (e.g., (4.10)) is convenient to obtain
higher order constructive formulas for the effective conductivity, since such
a series explicitly contains elliptic functions in corrections of all orders (also
compare the expansions (3.10)�(3.11) and (3.8); in the latter the higher
order terms in the expansion in \ have been expressed through the double
operator's series). The Eisenstein functions are well studied, high precision
fast numerical algorithms and analytical formulas based on %-functions(13, 31)

are readily available for computing the elliptic functions. To summarize, we
remark that the series in v corresponds to the physical nature of the
problem, in particular, it can be used for the high contrast case (compare
with (1.2), where \ tends to zero), when |\| is closed to 1 and the expan-
sion in v provides simple approximate formulas for the higher order terms
in the expansion of *e . Note that the effective conductivity *e is an analytic
function in v in the 2D case. The latter is not so in the 3D case (see, for
example, refs. 18 and 4).

We next consider a random distribution of the fibers. To simplify
presentation we consider the unit cell with identical inclusions whose
centers a1 , a2 , a3 , a4 are random variables. Each center is uniformly dis-
tributed in a disk of the radius d. Centers of these disks form a square array
on the plane (shaded disks, see Fig. 1) whereas the disks which correspond
to the fiber's cross-sections do not form the periodic array. Hence, we

Fig. 1. ``Shaking'' geometry.
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investigate a random ``shaking'' of the fibers about the periodic square
array (d does not have to be small and therefore our results are not pertur-
bative in d ). We represent the expected value (*e) of the random value *e

in the form (*e)=* (0)
e +(*� e) where * (0)

e corresponds to the deterministic
structure, when d=0 and the centers are located at the sites of the regular
square array; the term (*� e) appears due to the randomness. The parameter d
has been chosen so that the fibers cannot touch. However, our method also
works when cylinders touch each other but do not form a spanning cluster of
touching cylinders in the periodic cell, i.e., no infinite chains of touching disks
in the plane are allowed (see also Remark 3.1 from Section 3). In other words
we do not consider the percolation phenomenon. The quantity (*� e) is a
correction due to the random shaking. We represent (*� e) as a power series in
v and evaluate coefficients in this series in terms of the integrals of the elliptic
Eisenstein functions (see Appendix C and D). We show that these integrals are
analytic in d (see formulas (5.4) and (6.20)). Thus we have extended the
Clausius�Mossotti formula (1.1) for a non dilute case by adding the higher
order terms in concentration v and qualitatively evaluated the effect of ran-
domness by evaluating the dependence on the ``shaking'' parameter d (see (5.1),
(5.4)). Moreover, we have proved that the correction (*� e) is positive, if
*1>*=1, i.e., \>0. This leads us to an important qualitative conclusion:
any random shaking described above (see Fig. 1) of the periodic square
array (see Fig. 2) results in the increase of the effective conductivity. In

Fig. 2. The periodic array.
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other words the periodic array provides minimum of the effective conduc-
tivity in our class of arrays (the ``shaking'' geometries). We mention here a
heuristic argument which suggests that the shaking geometries provide a
reasonable approximation for random mixtures at high concentrations.
Indeed there is not much room for the inclusions to move around, when
their density is relatively high. Therefore the inclusions could naturally
form some kind of a shaking pattern, whereas at small concentrations the
random patterns could be very different from the shaking geometries.

We also remark that many authors studied various aspects of homoge-
nization for random composite materials (see, for example, refs. 14, 27, 29,
30, and 6). Our focus is to look for special cases where explicit analytical
formulas for the effective conductivity can be obtained. We also note that a
generic approach based on the n-point probability functions and variational
bounds have been developed and used by several authors (see refs. 30, 21,
3, 20 and references therein).

Finally we remark that in the paper(15) the extremal property of the
periodic array has been established for the case of the dilute limit (small
concentration of the inclusions) in 3D. This was done under an assumption
that the centers of the square array of small balls can be randomly perturbed
(a small perturbation). Of course, the case of small concentrations is quite
different from our consideration since we allow arbitrary high concentra-
tions up to the touching (touching excluded) and therefore we account for
interactions of all orders (unlike the dilute limit case when the interactions
are negligible). Moreover our ``shaking'' parameter d, which characterizes
random perturbation of the centers of disks is not small, that is we allow
all perturbations up to the touching (touching excluded). In this regard the
small perturbation result of ref. 15 can be viewed as a liner part (approxi-
mation or expansion) in d of our formula for the effective conductivity. In
other words the result of ref. 15 has a local nature (small concentration,
and small random perturbation about the periodic array). Our result
shows that the conclusion of the Kozlov's theorem(15) also holds for the
global case (non small concentration and non small d ).

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

We consider a lattice Q which is defined by the two fundamental trans-
lation vectors 1 and i (i 2=&1) in the complex plane C$R2 of the com-
plex variable z=x+iy. The zeroth cell Q(0, 0) (the basis of Q) is the square
[z=t1+it2 # C : &1�2<tp<1�2, p=1, 2]. Let E :=�m1 , m2

[m1+im2] is
the set of the lattice points, where m1 and m2 belong to the set of integer
numbers Z. The lattice Q consists of the cells Qm1 , m2

=Q(0, 0)+m1+im2 :=
[z # C : z&m1&im2 # Q(0, 0)]. Let us consider mutually disjoint equal disks
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Fig. 3. The periodicity cell with inclusions.

(inclusions) Dk :=[z # C : |z&ak |<r] (k=1, 2,..., N ) in the zeroth cell
Q(0, 0) (see Fig. 3).

Let Tk :=[t # C : |t&ak |=r] be the boundary of Dk , and D0 :=
Q(0, 0)"(�N

k=1 Dk _ Tk) be the connected phase (the matrix or host) in the
zeroth cell Q(0, 0) . Hereafter we use the letters z and t for a variable inside
the domain, and on the boundary of the domain respectively. We study the
effective conductivity of the doubly periodic composite material, when the
domains D0 and Dk in the cell Q(0, 0) are occupied by materials of conduc-
tivities *=1 and *1>0, respectively (Fig. 3), i.e., the unbounded domain
Dper :=�m1 , m2

(D0 _ �Q(0, 0)+m1+im2) and the disks Dk+m1+im2 are
occupied by two different materials and generate a composite material with
a doubly periodic planar structure. The potential u(z) satisfies the Laplace
equation

2u=0 in .
N

k=1

(Dk+m1+im2) _ (D0+m1+im2) (2.1)

with the conjugation conditions:

u+=u&,
�u+

�n
=*1

�u&

�n
on Tk , k=1, 2,..., N (2.2)

121Generalized Clausius�Mossotti Formula



where ���n is the outward normal derivative and

u+(t) := lim
z � t, z # D0

u(z) u&(t) := lim
z � t, z # Dk

u(z)

t # Tk , k=1, 2,..., N. We also impose on u(z) the quasi periodicity condi-
tions, i.e., u(z) has constant jumps along the unit cell. We consider the
external field applied in the x-direction given by the following conditions:

u(z+1)=u(z)+1, u(z+i )=u(z) (2.3)

We introduce the complex potentials .(z) and .k(z) analytic in D0 and Dk ,
respectively, and continuously differentiable in the closures of D0 and Dk .
The harmonic and analytic functions are related by the equalities

u(z)={
R(.(z)+z),

2
1+*1

R.k(z),

z # D0

z # Dk , k=1, 2,..., N
(2.4)

where R stands for the real part. The normalization factor 2�(1+*1) is
introduced, otherwise it would of appear in (2.6). Note that .(z) is single-
valued (see Appendix B) in D0 and periodic in C, namely (2.3) implies

.(z+1)=.(z)=.(z+i ) (2.5)

Two real conditions (2.2) can be written in terms of the complex potentials

.(t)=.k(t)&\.k(t)&t, |t&ak |=r, k=1, 2,..., N (2.6)

In Appendix B it is shown that (2.6) is equivalent to (2.2) up to an additive
pure imaginary constant. In order to determine the current {u(x, y) we
need only the derivatives

�(z) :=
�.
�z

=
�u
�x

&i
�u
�y

, z # D0

�k(z) :=
�.k

�z
=

*1+1
2 \�u

�x
&i

�u
�y+ , z # Dk

(2.7)

Differentiating (2.6) we arrive at the following problem

�(t)=�k(t)+\ \ r
t&ak +

2

�k(t)&1, |t&ak |=r, k=1, 2,..., N
(2.8)

(see Appendix A for details).
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3. METHOD OF FUNCTIONAL EQUATIONS

In this section we describe the method of functional equations (see
refs. 11 and 26). We first provide a short overview of this method. In the
above problem we have N contours Tk and N conjugation conditions on
each contour, and we need to find N+1 functions �, �1 ,..., �N . Thus,
roughly speaking, we need one more condition to close up the system. To
get this condition we modify �, �1 ,..., �N in their domains so that the
obtained function 8(z) (see (3.5)) is defined everywhere in the unit cell
Q(0, 0) (including the holes Dk) and its jump across each Tk is zero. The
latter implies that 8(z) is analytic inside the periodicity cell Q(0, 0) . Since it
is double periodic we apply Liouville's theorem (for double periodic func-
tions, see ref. 13) and conclude that 8(z)=c.

Let us consider the Banach space Ck of the functions continuous on
Tk with the norm &�k & :=maxTk

|�k(t)| (k=1, 2,..., N ). Next we consider
the closed subspaces C +

k /Ck for which the functions �k have analytic
continuation into Dk . We also introduce the Banach space C+ consisting
of the functions 9(t) :=�k(t) # C +

k for all k=1, 2,..., N with the norm
&9& :=maxk &�k& (9(t) is defined in all disks Dk). Let us introduce the
Mo� bius transformations in z�

:(z� ) :=
r2

z&ak&m1&im2

+ak

for fixed k=1, 2,..., N. If m1=m2=0, then :(z� ) becomes the inversion with
respect to the circle Tk . The right-hand side of the following relation

�k(t)=�k \ r2

t&ak

+ak+ , t # Tk

provides analytical continuation from |t&ak |=r into |z&ak |>r. If
m1+im2{0, then :(z� ) consists of the inversion with respect to the circle
Tk+m1+im2 and translation by the vector &(m1+im2). One can see that
:(z� ) with m1+im2{0 transforms the closed disk |z&ak |�r into another
closed disk which lies inside the open disk |z&ak |<r. The latter geometri-
cal property (contraction property) of :(z� ) allows us to assert that the
operator

(Wm1 , m2k�k)(z)=\ r
z&ak&m1&im2+

2

�k \ r2

t&ak&m1&im2

+ak+ (3.1)
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is compact from C +
k into C +

k for m1+im2{0 (there is no summation in
the repeated index k). Indeed, applying the Cauchy integral formula(1) we
have the following representation

�k \ r2

z&ak&m1&im2

+ak +=
1

2?i |
Tk

�k({) d{

{&
r2

z&ak&m1&im2

&ak

(3.2)

Thus (3.1) is a composition of a compact operator (3.2), the operator of
the complex conjugation, and a bounded operator of the multiplication by
(r�(z&ak&m1&im2))2. Therefore the operator (3.1) is bounded in |z&ak |
�r (m1+im2{0). Compactness of (3.2) follows from the fact that its kernel
is a continuous function in ({, z) # Tk_Dk . The latter follows from the
contraction property. Analogously the operator Wm1 , m2k for each m1 , m2

and each m=1, 2,..., N; m{k is compact and maps C +
k into C +

m .

Remark 3.1. In the case of touching cylinders the operator (3.1) is
not compact, blot it is bounded, if the touching disks do not generate an
infinite chain in the plane. If the touching disks do not generate an infinite
chain in the plane, then the convergence of the successive approximations
still holds(26) and Theorems 3.3 and 3.4 hold.

We shall use Wm1 , m2k to reduce the conjugation problem (2.8) to a
system of functional equations. First we sum up (Wm1 , m2k �k)(z)=
(W(0, 0) k�k)(z&m1&im2) over all translations m1+im2 to obtain a double
periodic functions. To this end we expand �k(z) into the Taylor series

�k(z)= :
�

l=0

�lk(z&ak) l

Next we use the following theorem.(23, 24)

Theorem 3.2. (i) The series � j (W jk�k)(z) ( j=(m1 , m2), k fixed)
converges absolutely and uniformly in the perforated cell D0 _ �D0 . It
defines a function which is analytic in D0 , continuous in D0 _ �D0 and
doubly periodic. This function can be written in the form

:
j

(W jk�k)(z)= :
�

l=0

�� lk r2(l+1)El+2(z&ak), z # D0 (3.3)

where El (z) is the Eisenstein function of order l (see Appendix C).
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(ii) The series

:
j

$ (W jk �k)(z) :=:
j

(W jk �k)(z)&\ r
z&ak +

2

�k \ r2

z&ak
+ak+

defines a function analytic in the unit cell Q(0, 0) , continuous in
Q(0, 0) _ �Q(0, 0) . This function can be written in the form

:
j

$ (W jk�k)(z)= :
�

l=0

�lk r2(l+1)_ l+2(z&ak) (3.4)

where _l (z) is the modified Eisenstein function (see Appendix C).

(iii) The linear operator �$j W jk�k(z) is compact in C +
k .

This theorem allows us to introduce an auxiliary function

�m(z)&\ :
N

k=1

:*
m1 , m2

(Wm1 , m2 k�k)(z)&1, |z&am |�rm ,

8(z)={ m=1, 2,..., N (3.5)

�(z)&\ :
N

k=1

:
m1 , m2

(Wm1 , m2k�k)(z), z # D0

where �N
k=1 �*m1 , m2

Wm1 , m2k :=�k{m �m1 , m2
Wm1 , m2k+�$m1 , m2

Wm1 , m2m . It
follows from Theorem 3.2 that 8(z) is analytic in D0 and Dk (k=1,
2,..., N ); it is also doubly periodic. Let us calculate the jump of 8(z) across Tm

2 :=8+(t)&8&(t)=�(t)&\ \ r
t&am +

2

�m(t)+1, |t&am |=r

2 :=8+(t)&8&(t)=�(t)&\ \ r
t&am +

2

�m(t)&�m(t)+1, |t&am |=r

Taking into account (2.8) we obtain 2=0. Using the principle of
analytic continuation and the generalized Liouville theorem for doubly
periodic functions(13) we conclude that 8(z)#c, where c is a constant.
It will be shown in Section 4 that c=0. Writing the relation 8(z)=0 in
|z&am |�r we obtain the system of linear functional equations

�m(z)=\ :
N

k=1

:*
m1 , m2

(Wm1 , m2k �k)(z)+1, |z&am |�rm , m=1, 2,..., N
(3.6)
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with respect to �m # C +
m . The system (3.6) can be considered as an equation

for the function 9(z) in the space C+

9(z)=\ :
N

k=1

:*
m1 , m2

Wm1 , m2k 9(z)+1, z # .
N

m=1

(Dm _ Tm) (3.7)

where 9(z)=�m(z) in |z&am |�r for each m=1, 2,..., N. We will use the
following theorem:(23)

Theorem 3.3. Equation (3.7) has the unique solution in C+. It can
be found by the method of successive approximations, which gives the
following series

�m(z)=1+\ :
N

k1=1

:
j1

* W j1k1
1(z)+\2 :

k1

:
k2

:
j1

* :
j2

* W j1k1
W j2k2

1(z)+ } } } ,

|z&am |�rm , m=1, 2,..., N (3.8)

The function �(z) has the form

�(z)=\ :
N

k=1

:
j

(W jk�k)(z), z # D0 _ �D0 (3.9)

Convergence in C+ means uniform convergence, which preserves analyticity
in the limit. The operator Wm1 , m2k depends analytically on r2. Hence we
can consider �m(z) determined by (3.8) as an analytic function in variable
(\, r2) in the bidisk U_V, where U is the unit disk, V is the disk of the
radius r2

0 . The critical radius r0 is the minimum radius of the disks with the
given set of the centers ak (k=1, 2,..., N ) for which at least two disks are
touching. This allows us to propose another method to solve (3.6) or (3.7).
Namely we look for �m(z) in the form of series expansion in r2:

�m(z)=� (0)
m (z)+r2� (1)

m (z)+r4� (2)
m (z)+ } } } (3.10)

Using the representations (3.3) and (3.4) which is based on the Eisenstein
functions and (3.10) we rewrite Eqs. (3.6) in the form

:
�

s=0

r2s� (s)
m (z)=\ _ :

N

k{m

:
�

l=0

:
�

s=0

� (s)
lk r2(s+l+1)El+2(z&ak)

+ :
�

l=0

:
�

s=0

� (s)
lm r2(s+l+1)_l+2(z&am)&+1,

|z&am |�rm , m=1, 2,..., N
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where each term in (3.10) is expanded into the Taylor series

� (s)
k (z)= :

�

l=0

� (s)
lk (z&ak) l

Collecting the coefficients of the like powers of r2 we arrive at the following
theorem:

Theorem 3.4. Let u(z) be the solution of the cell problem (2.1)�(2.3)
and let {u be the flux defined in (2.7):

�u
�x

&i
�u
�y

={
�(z)+1,

2
*1+1

�k(z),

z # D0 _ �D0

z # Dk _ Tk , k=1, 2,..., N

Here z=x+iy, �k(z) and �(z) are given by (3.10) and (3.9), respectively,
where � ( p)

m (z) are given by the following recurrence relations:

� (0)
m (z)=1

� (1)
m (z)=\ _ :

N

k{m

� (0)
0k E2(z&ak)+�(0)

0m _2(z&am)&
=\ _ :

N

k{m

E2(z&ak)+_2(z&am)&
� (2)

m (z)=\ { :
N

k{m

[� (0)
0k E2(z&ak)+� (0)

1k E3(z&ak)&
+� (1)

0m_2(z&am)+�(1)
1m_3(z&am)=

b (3.11)

� ( p+1)
m (z)=\ { :

N

k{m

� (0)
pk Ep+2(z&ak)+� (0)

pm_p+2(z&am)

+ :
N

k{m

� (1)
p&1, kEp+1(z&ak)+� (1)

p&1, m_p+1(z&am)+ } } }

+ :
N

k{m

� ( p)
0k E2(z&ak)+� ( p)

0m _2(z&am)= , p=0, 1, 2,...
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Thus we have found a simple recursive algorithm which defines the
flux {u (u is a solution of (2.1)�(2.3)) in terms of the Eisenstein functions,
the contrast parameter \, and the radius r of the identical disks. We remark
that in order to determine the effective conductivity it is sufficient to know
the flux {u.

4. EFFECTIVE CONDUCTIVITY

Let us find the effective conductivity tensor

4e=\ *x
e

*xy
e

*xy
e

* y
e + (4.1)

of the composite material represented by the zero cell Q(0, 0) . We will com-
pute *x

e and *xy
e , then * y

e can be calculated similarly to *x
e . The variational

definition of 4e can be found in refs. 2 and 9. We will use an equivalent
definition which can be obtained by a simple application of Green's
formula

*x
e =|

D0

�u
�x

dx dy+*1 :
N

m=1
|

Dm

�u
�x

dx dy (4.2)

*xy
e =|

D0

�u
�y

dx dy+*1 :
N

m=1
|

Dm

�u
�y

dx dy (4.3)

where u is the solution of the problem (2.1)�(2.3). Using another Green's
formula

|
G \

�g
�x

&
�f
�y + dx dy=|

�G
f dx+ g dy (4.4)

we obtain

|
D0

�u
�x

dx dy=|
�D0

u dy=|
�Q(0, 0)

u dy& :
N

m=1
|

�Dm

u dy (4.5)

Here we assume that the curves �Q(0, 0) and �Dm are oriented in the counter-
clockwise direction. Since the jump of u on the unit cell along the x-direction
is equal to 1, we get

|
D0

�u
�x

dx dy=1& :
N

m=1
|

Dm

�u
�x

dx dy (4.6)
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Along similar lines we have

|
D0

�u
�y

dx dy=& :
N

m=1
|

Dm

�u
�y

dx dy (4.7)

Then (4.2)�(4.3) become

*x
e &i*xy

e =1+(*1&1) :
N

m=1
|

Dm
\�u

�x
&i

�u
�y+ dx dy

Using (2.7) and the identity(1)

�m(z)=.$m(z)=
�

�x
[R.m(z)]&i

�
�y

[R.m(z)]

we obtain

*x
e &i*xy

e =1+2\ :
N

m=1
|

Dm

�m(z) dx dy

Due to the mean value theorem for harmonic functions we have

*x
e &i*xy

e =1+2\v
1
N

:
N

m=1

�m(am) (4.8)

where v=N?r2 is the concentration of the inclusions of conductivity *1 .
Since �m(z) has been calculated in Theorem 3.3, formula (4.8) provides an
exact formula for *x

e &i*xy
e .

Remark 4.1. In Section 3 we put 8(z)=c#0. If we formally keep
the constant c, then (4.8) for \=0 (*1=1) becomes *x

e &i*xy
e =1+c. Thus

c must be zero since for \=0 we have the uniform material of the unit
conductivity without the inclusions

Assume that our composite material is macroscopically isotropic.
Then the effective tensor 4e is of the form 4e=*eI, where *e is the effective
conductivity (scalar), I is the unit matrix. In this case (4.8) becomes

*e=1+2\v
1
N

:
N

m=1

�m(am) (4.9)

Using (3.10) we write *e in the form of the series in v:

*e=1+2\v[A0+A1v+A2v2+ } } } ] (4.10)
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where

Ap=
1

? pN p+1 :
N

m=1

� ( p)
m (am), p=0, 1,... (4.11)

We now use the recurrence relations from Theorem 3.4 to calculate the
coefficients Ap in terms of the Eisenstein functions. For the sake of sim-
plicity of the final formulas we apply the convention

Ep(z&ak) :={Ep(z&ak),
_p(z&am)

k{m
k=m

where the number m is the number of the corresponding function �( p)
m (z).

In particular

Ep(ak&am) :={Ep(ak&am),
Sp

k{m
k=m

(4.12)

Here the functions Ep , _p and the constants Sp are derived in Appendix C.
Moreover, we assume that all indexes k, k1 ,..., ks in the formulas below
change from 1 to N. Then

� (0)
m (z)=1

� (1)
m (z)=\ :

k

E2(z&ak)

� (2)
m (z)=\2 :

k, k1

E2(ak&ak1
) E2(z&ak)

� (3)
m (z)= &2! \2 :

k, k1

E3(ak&ak1
) E3(z&ak)

+\3 :
k, k1 , k2

E2(ak&ak1
) E2(ak1

&ak2
) E2(z&ak) (4.13)

� (4)
m (z)=3! \2 :

k, k1

E4(ak&ak1
) E4(z&ak)

&2! \3 :
k, k1 , k2

[E3(ak&ak1
) E2(ak1

&ak2
) E3(z&ak)

+E3(ak&ak1
) E3(ak1

&ak2
) E3(z&ak)]

+\4 :
k, k1 , k2 , k3

E2(ak&ak1
) E2(ak1

&ak2
) E2(ak2

&ak3
) E2(z&ak)
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Substitute (4.13) in (4.11) and use the following notations

Xl := :
k, k1

El (ak&ak1
)= :

N

k=1

:
k1{k

El (ak&ak1
)+N_l (0)

(4.14)

Xp1 } } } pM
:= :

m, k1 ,..., kM

Ep1
(am&ak1

) Ep2
(ak1

&ak2
) } } } CM&1EpM

(akM&1
&akM

)

where C is the operator of complex conjugation. If M is odd, then CM&1

is the identity operator. If M is even, then CM&1 is the operator of complex
conjugation. We also use the notation

Yp1 } } } pM
:= :

N

m=1

:
N

k1{m

} } } :
N

kM{kM&1

Ep1
(am&ak1

)

_Ep2
(ak1

&ak2
) } } } CM&1EpM

(akM&1
&akM

) (4.15)

to represent the convolutions Ep1
(am&ak1

) Ep2
(ak1

&ak2
) } } } CM&1EpM

(akM&1

&akM
) in an explicit form. We will need this notation when evaluating some

integrals arising in the analysis of the ``shaking'' (random) configurations.
Then according to (4.12), (4.14) and (4.15)

Xp1 } } } pM
=Yp1 } } } pM

+SpM
Yp1 } } } pM&1

+SpM
SpM&1

Yp1 } } } pM&2

+ } } } +SpM
SpM&1

} } } Sp1
(4.16)

and we obtain

A0=1, A1=
\

?N 2 X2 , A2=
\2

?2N 3 X22 ,

A3=
1

?3N 4 [&2\2X33+\3X222],

A4=
1

?4N 5 [3! \2X44&2! \3(X332+X233]+\4X2222]

A5=
1

?5N 6 [&4! \2X55+3! \3(X442+X343+X244) (4.17)

&2! \4(X3322+X2332+X2233)+\5X22222]

A6=
1

?6N 7 [5! \2X66&4! \3(X255+X354+X453+X552)

+3! \4(X2244+X2343+X3333+X2442+X3432+X4422)

&4! \5(X22233+X22332+X23322+X33222)+\6X222222)]
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Here we have calculated A0 , A1 ,..., A6 . It is possible to proceed and to
calculate the next terms A7 , A8 ,... . One can see that the coefficients Ap are
determined via Xp1 } } } pM

, which are sums of the Eisenstein functions of the
arguments of the type ak&am with some factors (e.g., \�?N 2). Hence, we
have obtained the following result.

Theorem 4.2. Let the array of inclusions be such that the effective
homogenized medium is isotropic. Then the effective conductivity has the
form

*e=1+2\v :
6

p=0

Apv p+O(v8) (4.18)

Here Ap are calculated in (4.14) and (4.17), where Ep are the Eisenstein
functions, N is the number of inclusions in the unit cell; \ is the contrast
parameter and the effective tensor 4e is defined in (4.1)�(4.3).

5. EFFECTIVE CONDUCTIVITY OF A RANDOM COMPOSITE

In this section we apply the formulas from Section 4 to evaluate the
effective conductivity *e of an isotropic random composite material. For
the sake of simplicity we choose N=4 and consider the centers a1 , a2 , a3 ,
a4 as i.i.d. random variables. Let

fk(z) :={
1

?d 2 ,

0,

|z&bk |<d

otherwise

be the probability density, which corresponds to the continuous uniform
law, that is the point ak is uniformly distributed inside the disk |z&bk |<d.
Here b1= 1

4 (1+i ), b2= 1
4 (&1+i ), b3= 1

4 (&1&i ), b4=(1&i ) are the sites
of the regular square array. Thus the disks Dk are randomly distributed
inside the unit periodicity cell (square) Q(0, 0) , so that we have the double
periodic random structure. We assume that d+r< 1

4 (see Fig. 1). This
means that each disk lies in the prescribed quarter of the original square
cell and does not cross or touch the coordinate axes. For the sake of
simplicity we decompose each Ap into the sum Ap=A (0)

p +A� p , where A (0)
p

corresponds to the deterministic (periodic) structure and A� p is the correc-
tion due to the randomness (the ``fluctuation part''). Since (4.10) is linear
in Ap we obtain the same decomposition for *e : *e=* (0)

e +*� e . Calculating
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the expected value from the latter relation we get (*e) =* (0)
e +(*� e). The

deterministic part * (0)
e corresponds to a single inclusion in a square peri-

odicity cell and has been calculated by several authors (see refs. 17, 19,
and 25). We now calculate the expectation of the fluctuation part

(*� e) = 2\v[(A� 0) +(A� 1) v+(A� 2) v2+ } } } ] (5.1)

(A� p) :=|
[Q(0, 0)]4

A� p(a1 ,..., a4) `
4

k=1

fk(ak)(d_)4, p=0, 1, 2,... (5.2)

where ak=x+iy (k=1, 2, 3, 4) are the variables of integration, fk is the
probability density function, d_ :=dx dy. Here we identify the random
variable ak with the parameter of integration. The coefficients A� p(a1 ,..., a4)
are expressed through the special terms Jp1 } } } pM

defined as follows:

Jp1 } } } pM
=(Zp1 } } } pM

) (5.3)

where

Zp1 } } } pM
=Ep1

(ak0
&ak1

) Ep2
(ak1

&ak2
) } } } CM&1EpM

(akM&1
&akM

)

First we calculate Jp1 } } } pM
, then (Xp1 } } } pM

) from (4.14)�(4.17). The details
of these calculations are presented in Appendix D. In particular, we have
proved in Appendix D that Jp1 } } } pM

is an analytic function of d 2, and
(Xp1 } } } pM

) can be computed as a sum of Jp1 } } } pM
. This implies that

(Xp1 } } } pM
) is also analytic in d 2 and can be expanded into a convergent

power series in d 2. Convergence in d 2 holds for admissible d 2, i.e., d+r< 1
4 ,

since the uniform convergence holds for all parameters in the method of
successive approximations for the general functional equation (3.7). Hence
we can decompose (Xp1 } } } pM

)

(Xp1 } } } pM
) =X (0)

p1 } } } pM
+(X� p1 } } } pM

)

Here the first term corresponds to the deterministic part (d=0) and
the second term corresponds to the fluctuations due to the random
``shaking.'' The solution �k(z) of (3.6) is analytic in ak , since each term in
the series (3.8) is analytic in ak and the series uniformly converges in \
(analytic in \). Therefore �k(ak) is analytic in ak . The latter implies the
coefficients Ap are analytic in ak .

To compute the dependence of the expected value (Ap) on the
parameter d 2 we write ak=bk+Rei%, 0�R�d and integrate in R from 0
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to d ( for d< 1
4&r). As a result of these calculations (see Appendix D) we

get the following formulas for (A� p) ( p=0, 1, 2):

(A� 0)=(A� 1) =0

(A� 2)=
\2

?243 (X� 22) =
\2

16?2 :
�

l=1

h2
4l (4l&1) d 8l&4

(5.4)

where h4l is obtained by evaluating the Rayleigh sums (see Lemma 6.3). We
can proceed to obtain analogous analytical formulas for (A� p) when p>2.
One can see that each term (A� p) ( p=0, 1, 2) is non-negative. We next
show that this is true for all p.

Theorem 5.1. The expected values of the fluctuation of the correc-
tions defined in (5.2) are non-negative

(A� p)�0, p=0, 1, 2,... (5.5)

Proof. The proof is based on the observation that the sign of
(Yp1 } } } pM

) (see (4.14)�(4.17)) is equal to (&1)/(P) with P=( p1 , p2 ,..., pM)
(/(P) is defined in (6.24)) and keeping track of the sign of each (Xp1 } } } pM

)
and (Yp1 } } } pM

) in Ap (see Lemma 6.5).
It follows from (3.11) and (4.11) that Ap can be constructed in the

following way. First we determine

1
N

:
N

m=1

� ( p)
m (z)=

1
N

:
m, k

[� ( p&1)
0k E2(z&ak)

+� ( p&2)
1k E3(z&ak)+ } } } +� (1)

p&2, kEp(z&ak)]

Then we substitute z=am

Ap=
1
N

:
N

m=1

� ( p)
m (am)

=
1
N

:
m, k

[� ( p&1)
0k E2(am&ak)

+� ( p&2)
1k E3(am&ak)+ } } } +� (1)

p&2, kEp(am&ak)] (5.6)

We now apply the induction in p to check the following. If (Xp1 } } } pM
)>0

(<0) then it enters (Ap) with the plus (minus) sign and a positive factor
respectively that is (Ap) computed by (5.6) is a linear combination of
|(Xp1 } } } pM

) | with non-negative coefficients. Using (5.4) we see that this is
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true for (Ap) , p=0, 1, 2. Now we assume that this is true for
s=0, 1, 2,..., p&1 and consider (Ap) as given by (5.6). Take the term
�( p&1)

0k in (5.6). It contains the quantities (Xp1 } } } pM
). We multiply

�( p&1)
0k E2(z&ak) by E2(z&ak), substitute z=am , sum up over all

m=1, 2,..., N, divide by N and calculate the expectation ( ). Then each
(Xp1 } } } pM

) becomes (Xp1 } } } pM pM+1
), pM+1=2. Now take � ( p&2)

1k in (5.6).
In the same way we see that (Xp1 } } } pM

) becomes (Xp1 } } } pM pM+1 pM+1
) ,

pM+1=3, moreover it is multiplied by (&1) in accordance with (6.24). On
the other hand �( p&2)

1k is also multiplied by (&1), since differentiation
transforms the function El (z) as follows E$l (z)=&lEl+1(z). Then we again
preserve the positive sign. Same argument applies to other terms in (5.6)
and theorem is proved.

APPENDIX A

In the present section we prove the relation

[.(t)]$=&\ r
t&ak+

2

.$(t), |t&ak |=r (6.1)

which is valid for each .(z) represented by the expansion

.(z)= :
�

l=0

:k(z&ak) l, |z&ak |�r

We have t=r2�(t&ak )+ak on |t&ak |=r, hence the left-hand side of (6.1)
can be written in the form

[.(t)]$= :
�

l=1

:k
r2l (&l )

(t&ak) l+1 (6.2)

The right-hand side of (6.1) can be written in the form

&\ r
t&ak+

2

.$(t)=&\ r
t&ak+

2

:
�

l=1

l :k
r2(l&1)

(t&ak) l&1 (6.3)

Comparison of (6.2) and (6.3) implies (6.1).

APPENDIX B

In ref. 26 the problem of (2.6) type is called the R-linear conjugation
problem. If \=0, (*1=1), we get the C-linear problem, when . and .k are
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related to C-linear conjugation condition. If \=1 (*1=�) or \=&1
(*1=0), we arrive at the Hilbert�Riemann problem. In our case |\|<1.
Qualitative study of this case has been performed in ref. 22. We now show
that the conjugation conditions (2.2) can be written in the form (2.6). The
complex potentials have the following structure

.(z)+z=u(z)+iv(z), z # D0 _ �D0

.k(z)=
*1+1

2
(uk(z)+ivk(z)), z # Dk _ Tk

where v and vk are harmonic conjugate to u and uk , respectively. Let ���s
is the derivative in the natural parameter s. Using the Cauchy�Riemann
equation(10) (Chapt. 5, p. 382) �u��n=&�v��s and �uk ��n=&�vk ��s we
can write the second relation (2.2) in the form

�v
�s

=*1

�vk

�s
on Tk (6.4)

Integration (6.4) in s yields

v=*1 vk+ck on Tk

where ck is an arbitrary real constant (see for example (2.3) and ref. 1).
We put ck=0, since a complex potential is determined up to a purely
imaginary additive constant. Hence (2.2) becomes

u=uk , v=*1vk on Tk (6.5)

Add the first relation (6.5) and the second relation (6.5) multiplied by i. We
have

u+iv=uk+i*1 vk on Tk (6.6)

Substituting uk=[1�(*1+1)](.k+.k ), vk=1�(*1+1) } (1�i )(.k&.k ) and
u+iv=.(t)+t in (6.6) we obtain (2.6).

In general case, a harmonic function in a multiply connected domain
is represented as the real part of a multi-valued analytic functions, (10)

Chapt. 5, p. 375). We explain now, why we take the single-valued function
.(z) in D0 . The function .(z) is single-valued in D0 if and only if the
integral of �v��s along each circle Tk is zero

|
Tk

�v
�s

ds=0 (6.7)
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To verify (6.7) we apply the second relation (6.5) and the Cauchy�Riemann
equation

|
Tk

�v
�s

ds=*1 |
Tk

�vk

�s
ds=*1 |

Tk

�uk

�n
dS

The latter integral is equal to zero which follows from the harmonicity of
uk inside Tk and the Green's identity. Therefore, (6.7) holds and .(z) is
single-valued in D0 .

APPENDIX C. ELLIPTIC FUNCTIONS

This section contains the description of the basic elliptic functions,
namely the Weierstrass' function P(z) (13) and the Eisenstein's functions
Em(z).(31)

First, we consider the lattice sums

S2n := :$
m1 , m2

(m1+im2)&2n (6.8)

introduced by Eisenstein(31) and applied to composite materials by
Rayleigh.(17) In the sum �$m1 , m2

the integer numbers m1 , m2 range from
&� to +� except the case when m2

1+m2
2=0 The theory of elliptic func-

tions and ref. 13 provide the following formula

P(z)=
1
z2+ :

�

n=2

(2n&1) S2nz2n&2 (6.9)

The function P(z) is doubly periodic. The Eisenstein's functions(31) are
introduced as follows

Em(z) := :
m1 , m2

(z&m1&im2)&m

The Eisenstein E2 and the Weierstrass function P are related by the identities

E2(z)=P(z)+S2

Moreover, E$l (z)=&lEl&1(z). Introduce the modified Eisenstein functions

_l (z)=El (z)&z&l, l=1, 2,...
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which are analytic in Q(0, 0) , and _l (0)=Sl , where Sl=0 for odd l. For the
square array S6=S10=S14= } } } =0.(17) The remaining sums are positive
and can be easily calculated by recursive formulas of the elliptic function
theory, (13) for instance, S2=?, S4=3.15121, S8=4.25577, S12=3.93885.

Recall that any meromorphic double periodic function (elliptic func-
tion) is a rational function of P(z) and P$(z).(13) Since our problem is
double periodic it is convenient to represent it via the Eisenstein functions
using the relation between El and P(z).

APPENDIX D. CALCULATION OF INTEGRALS AND SUMS

Lemma 6.1. Let K be the disk [w # C : |w&bk |<d ] and

J*pq :=
1

?d 2 |
K

Ep(am&w) Eq(w&al ) d_ (6.10)

then

J*pq= :
�

s=0

(&1)s C p&1
s+ p&1 C q&1

s+q&1 Es+ p(am&bk) Es+q(bk&al )
d 2s

s+1
(6.11)

Proof. We use the following formula(31)

E (s)
p (z) :=

d s

dzs Ep(z)=(&1)s p( p+1) } } } ( p+s&1) Ep+s(z) (6.12)

Then using the Taylor expansion we obtain

Ep(am&w)=(&1) p :
�

s=0

1
s!

E (s)
p (bk&am)(w&bk)s

= :
�

s=0

C p&1
p+s+1 Ep+s(am&bk)(w&bk)s (6.13)

Here we use the relation Ep(z)=(&1) p Ep(&z) from ref. 31 and (6.12).
Analogously

Eq(w&al )= :
�

s=0

(&1)s C q&1
q+s+1Eq+s(bk&al ) (6.14)
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Let s1 and s2 be integer numbers. Using the polar coordinates w&bk=Re i%

we calculate the integral

1
?d 2 |

K

(w&bk)s1 (w&bk)s2 d_={
0,

d 2s

s+1
,

if s1{s2

if s1=s2

(6.15)

Substituting (6.14) and (6.13) in the definition of Jpq (6.10) we obtain
(6.11). The lemma is proved.

We now calculate the integral

J*p1 } } } pM
:=

1
(?d 2)M&1 |

K1

} } } |
KM&1

Ep1
(ak0

&ak1
) Ep2

(ak1
&ak2

)

_ } } } _CM&1EpM
(akM&1

&akM
)(d_)M&1

which is a slight modification of Jp1 } } } pM
defined in (5.3). Here C is the

operator of complex conjugation; ak1
, ak2

,..., akM&1
, are the variables of inte-

gration, ak0
and akM

are parameters, (d_)M&1 :=dx1 dy1 } } } dxM&1 dyM&1 ,
akj

=xj+iy j .

Lemma 6.2. We have

J*p1 } } } pM
= :

s1 ,..., sM&1

(&1)s1+ } } } +sM&1 c[ p, s] Ep1+s1
(ak0

&bk1
)

_Ep2+s1+s2
(bk1

&bk2
) } } } CM&1EpM+sM&1

(bkM&1
&akM

)

_
d 2(s1+ } } } +sM&1)

(s1+1) } } } (sM&1+1)
(6.16)

where

c[ p, s] :=C p1&1
p1+s1&1C p2&1

p2+s1&1 C p2+s1&1
p2+s1+s2&1C p3&1

p3+s2&1 } } } C pM&1
pM+sM&1&1

:
s1 ,..., sM&1

= :
�

s1=0

:
�

s2=0

} } } :
�

sM&1=0

Proof. It is based on Lemma 6.1. For the sake of definiteness we
choose M to be an even number. First we integrate in ak1

in (6.16):

J*p1 } } } pM
=

1
(?d 2)M&2 |

K2

} } } |
KM&1

:
�

s1=0

C p1&1
p1+s1&1C p2&1

p2+s1&1

_Ep1+s1
(ak0

&bk1
) Ep2+s1

(bk1
&ak2

)

_Ep3
(ak2

&ak3
) } } } EpM

(akM&1
&akM

)(d_)M&2
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where ak2
,..., akM&1

are the variables of integration; ak0
, ak1

, akM
are param-

eters. Next we integrate in ak2
and so on. After repeating this integration

M&2 more times we obtain (6.16).
Lemma is proved.
We have integrated the convolution Ep1

(ak0
&ak1

) Ep2
(ak1

&ak2
) } } }

CM&1EpM
(akM&1

&akM
) in the variables ak1

, ak2
,..., akM&1

and have obtained
J*p1 } } } pM

. Next we need to calculate the integral in ak0
and akM

. It is
straightforward to check that the integration of J*p1 } } } pM

in ak0
and akM

gives

1
(?d 2)M+1 |

K0

} } } |
KM

Ep1
(ak0

&ak1
) Ep2

(ak1
&ak2

)

} } } CM&1EpM
(akM&1

&akM
)(d_)M+1

=
1

(?d 2)M+1 |
K1

} } } |
KM&1

Ep1
(bk0

&ak1
) Ep2

(ak1
&ak2

)

} } } CM&1EpM
(akM&1

&bkM
)(d_)M&1 (6.17)

Hence, we have J*p1 } } } pM
=(1�?2d 4) Jp1 } } } pM

when ak0
=bk0

and akM
=bkM

.
According to the theory of elliptic functions we introduce the

parameters related to periods:

w1=
1
2

, w2=&
1+i

2
, w3=

i
2

(6.18)

One can see that all arguments of Jp1 } } } pM
have the form bp&bq ( p{q),

and therefore they can only take the values \wk (k=1, 2, 3). It is
known(19) that for the square array all values Ep(wk) are real, hence we can
omit the complex conjugation in (6.16) for ak0

=bk0
, akM

=bkM
.

Lemma 6.3. Let hp :=�3
k=1 Ep(wp), then hp=(2 p&1) Sp , where

Sp are the Rayleigh suns (see Appendix C).

Proof. It is based on the relation �3
k=1 Ep(wp)+Sp=S� p , where S� p=

�$m1 , m2
(m1 �2+i(m2 �2))&p=2 p �$m1 , m2

(m1+im2)&p=2 pSp corresponds to
a quarter of the original unit cell (see the definition (6.8) of the sum Sp).

This proves the lemma.
Using (4.16) we now are ready to calculate the following sums

(Xp1 } } } pM
)=(Yp1 } } } pM

)+SpM
(Yp1 } } } pM&1

)+SpM
SpM&1

(Yp1 } } } pM&2
)

+ } } } +SpM
SpM&1

} } } Sp1

(Yp1 } } } pM
)= :

4

m=1

:
k1{M

} } } :
kM{km&1

Jp1 } } } pM
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where (Yp1 } } } pM
) can also be written in the form

(Yp1 } } } pM
) = :

s1 ,..., sM&1

(&1)s1+ } } } +sM&1

_c[ p, s] Ip1+s1 , p2+s1+s2 } } } pM+sM&1

d 2(s1+ } } } +sM&1)

(s1+1) } } } (sM&1+1)

where

Ip1 } } } pM
=Ep1

(bk0
&bk1

) Ep2
(bk1

&bk2
) } } } CM&1EpM

(bkM&1
&bkM

)

Lemma 6.4. The following representation holds:

Ip1 } } } pM
=4hp1

hp2
} } } hpM

(6.19)

Proof. It follows from the straightforward calculations. First we put
M=1, then

'1 :=Ep(b1&b2) :
l{2

Eq(b2&bl )+Ep(b1&b3) :
l{3

Eq(b3&bl )

+Ep(b1&b4) :
l{4

Eq(b4&b l )

Furthermore '1 contains the terms Ep(wk1
) Eq(wk2

), which are equal to zero
if p or q are odd. If p and q are even, then Ep and Eq are even functions
and

:
l{2

Eq(b2&bl )=Eq(b2&b1)+Eq(b2&b3)+Eq(b2&b4)= :
3

k=1

Eq(wk)=hq

Here we have used the relation Eq(z� )=Eq(z) and the condition that all
Eq(wk) are real. The other sums in l give the same result. Then

'1=hq(Ep(b1&b2)+Ep(b1&b3)+Ep(b1&b4))=hp hq

One can see that '1 does not depend on m. Therefore, Ipq=4hp hq .
Analogously we prove that

Ip1 } } } pM
=Ip1 } } } pM&1

hpM

By induction we conclude that (6.19) holds.
The lemma is proved.
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Applying Lemma 6.4, we obtain the following explicit expression

(Yp1 } } } pM
)= :

s1 ,..., sM&1

(&1)s1+ } } } +sM&1 c[ p, s] hp1+s1
hp2+s1+s2

} } } hpM+sM&1

_
d 2(s1+ } } } +sM&1)

(s1+1)(s2+1) } } } (sM&1+1)
(6.20)

which is important in the investigation of the sign of each term

(X� p1 } } } pM
) :=(Y� p1 } } } pM

)+SpM
(Y� p1 } } } pM&1

)

+ } } } +SpM
SpM&1

} } } Sp3
(Y� p1 p2

) (6.21)

in A� p . The values (X� p1 } } } pM
) , and hence (Y� p1 } } } pM

) , correspond to the fluc-
tuation part of the effective conductivity. The term h2h2 } } } h2 enters only in
the deterministic part (the coefficient in front of d 0, when p1= } } } = pM=2
and s1= } } } =sM=0 in (6.20)). Therefore, we do not care about the
term h2h2 } } } h2 and proceed now to investigate the remaining terms
hp1+s1

hp2+s1+s2
} } } hpM+sM&1

.
We observe that (Yp1 } } } pM

) {0 iff

p1+s1=4l1

p2+s1+s2=4l2

b

pM&1+sM&2+sM&1=4lM&1

pM+sM&1=4lM

where l1 , l2 ,..., lM are integer numbers. Then

s1=4l1& p1

s2=4(l2&l1)+ p1& p2

b (6.22)

sM&1=4(lM&1&lM&2+ } } } )+P

sM&1=4lM& pM

where P :=(&1)M&1 ( p1& p2+ } } } +(&1)M pM&1). The first M&1 rela-
tions in (6.22) determine l1 , l2 ,..., lM&1 . The last relation in (6.22) can be
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considered as the condition that pM+sM&1=4lM , lM # Z. This condition
implies that

(Yp1 } } } pM
){0 iff P=4l, l # Z (6.23)

Then

s1+s2+ } } } +sM&1=/(P)

where P=( p1 , p2 ,..., pM) and

/(P) :={p1+ p3+ } } } + pM&1 (mod 2),
p2+ p4+ } } } + pM&1 (mod 2),

if M is even
if M is odd

Then (Yp1 } } } pM
) has the sign (&1)/(P). Each non-zero term (Yp1 } } } pM

) in
(Ap) satisfies the condition that p1+ p2+ } } } + pM is an even number.
(6.23) implies that P is an even number too. Hence, for instance, for odd
M we have

/(P)#p2+ p4+ } } } + pM&1 (mod 2)

#( p1+ p2+ } } } + pM)& p2& p4& } } } & pM&1 (mod 2)

#p1+ p3+ } } } + pM

Therefore, /(P) can be defined as the sum of pj with odd j :

/(P) :={p1+ p3+ } } } + pM&1 (mod 2),
p1+ p3+ } } } + pM (mod 2),

if M is even
if M is odd

(6.24)

We have demonstrated that the sign of (Y� p1 } } } pM
) is equal to (&1)/(P).

Now we prove

Lemma 6.5. Let us fix an element P=( p1 , p2 ,..., pM) and corre-
sponding sets ( p1 , p2 ,..., p&), &=2, 3,..., M, where the term (X� p1 } } } pM

) con-
sists of the non-zero terms (Y� p1 } } } p&

) (see (6.21) and Appendix C). Then all
terms (Y� p1 } } } p&

) , &=2, 3,..., M, and hence (X� p1 } } } pM
) have the same sign

(&1)/(P).

Proof. We have that Sl{0 for the square array only if l=2,
4, 8, 12,... (see Appendix C). Then (6.21) implies that each of the terms
(X� p1 } } } pM

) consists of the terms (Y� p1 } } } p&
) with positive multipliers

SpM
} } } Sp&+1

only if p&+1 ,..., pM take the even values 2, 4, 8, 12,.... Then all
non-zero terms in (6.21) have the same sign (&1)/(P).

The lemma is proved.
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CONCLUSION

We first compute higher order terms in the Clausius�Mossotti formula,
which is the expansion of the effective conductivity in the concentration of
the fibers. This is done for an arbitrary number of unidirectional fibers,
which are arbitrary located in the unit periodicity cell. Using the complex
analysis techniques, we obtain analytical formulas for the coefficients in this
expansion.

Next we use these results to study random arrays (``shaking'' geometries)
when the fibers are allowed to move randomly inside the periodicity cell
according certain uniform distribution. We have computed analytical
dependence of the coefficients in the Clausius�Mossotti formula on the dis-
tribution parameter d. Analysis of this dependence (Theorem 5.1) shows
that the periodic array of the fibers has lower effective conductivity than
any array obtained by the random shaking of the fibers. The latter is
rigorously proved in the case of 4 cylinders in the unit cell and generaliza-
tion for an arbitrary number of fibers is straightforward (but cumbersome).
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